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LETTER TO THE EDITOR 

Variational principle for the turbulent diffusion equation 

Andrzej Icha 
Institute of Oceanology, Polish Academy of Sciences 81-967 Sopot, PO Box 68, ul 
PowstaAcdw Warszawy 5 5 ,  Poland 

Received 31 May 1989 

Abstract. The application of functional formalism to the description of turbulent diffusion 
is shown. The problem of the turbulent diffusion is formulated on the basis of a variational 
principle for the @ equation in the appropriate functional space. The existence of an exact 
constant of motion, as a consequence of this principle, is shown. 

A functional formalism for turbulent diffusion which evolves in time according to the 
passive scalar transport equation has been given by Szafirski (1971), who introduced 
the characteristic functional @ of a probability distribution of the velocity and con- 
centration fields and derived a functional differential equation for @. 

Finding the solution of the initial problem for the @ equation involves great 
mathematical difficulties. For several years only solutions simplifying the Hopf-type 
equations were found (cf Alankus 1988, Icha 1989a, b, Szafirski 1970, 1971). Thus, it 
is important to show some new methods of solving the @ equation. 

In this letter we show how a variational technique may be used to study the problem 
of turbulent diffusion. We derive a @ equation for the space characteristic functional 
using the appropriate variational principle in the suitable functional space and we 
show that a consequence of this principle is the existence of an exact constant of the 
motion. 

The equation that governs the evolution of a concentration c(x, t )  subject to diffusion 
and convection by an incompressible fluid is (Landau and Lifshitz 1986) 

ac a a2c _ -  ( U $ ) + k - - - - .  
at  axi axi axi 

Here x E R3, t E [O; a), U = U(X, t )  denotes the solenoidal flow velocity and k is the 
molecular diffusivity. 

The full statistical description of the field [c, U ]  can be obtained by defining the 
space characteristic functional @ (Szafirski 1971) 

(2) 
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where s (x )  is a continuous function with compact support in D c  R3, p(x, t )  is a 
continuous vector with compact support in D x (0: CO) and P denotes a probability 
measure of the random field [c, U]. This functional has the following properties: 

@[O, 0; t]  = 1: @*[s, p ;  11 = @[-s, - p ;  t ] :  p [ s ,  p ;  t]l  

@[s, p ;  11 =@[s, P s i  11 

1 
(3) 

where * denotes the complex conjugate and p s  is a solenoidal part of the real vector 
field p(x, 1 ) .  

The functional (0 satisfies the following first-order time-linear functional equation 
(Szafirski 1971): 

where S / 6 (  e )  is an operator of the functional derivative. 
Let us now introduce the real functional differential operators 

Substituting (5) into (4), we obtain the equation for @ in the form 

Later on we introduce the notion of the functional integral (Rzewuski 1969). As 
is well known, the functionals may be considered as the functions of an infinite number 
of variables (Rzewuski 1969, Volterra 1959). Given a functional @[s, p ]  we consider 
those functions s(x),  p(x)  which may be expanded in an orthogonal series 

s(x)  = c Sn$n(X) A x )  = c PnAn(X) (6) 
n n 

where the set {$n(x), A,(x)} is an infinite set of functions satisfying the orthonormality 
relations 

A,(x)A,(x) d x =  S,, (7) 

c + n ( X ) + n ( Y )  d x =  ~ ( x - Y )  CAfl(X)A,(Y) d x =  S(X-Y). (8) 

I $n(x)$m(x) d x ~  a n ,  I 
and the completeness relations 

n n 

Here Snm, S (  e )  are the Kronecker delta and the Dirac delta function, respectively. 
The functions (6) form a subset of the set of all functions. For a given set of 

orthonormal functions $n(x), An(x) they are determined uniquely by the infinite sets 
of expansion coefficients s,, p n .  Introducing (6) into the functional @[s, p ] ,  we obtain 
a function of the infinite set { s n , p n } :  

r 1 

According to the representation (9) of functionals by means of the function of 
infinitely many variables we can write the definition of a functional integral in the 
following way (Rzewuski 1969): 
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with the assumption that the integral on the right-hand side of (10) exists. This integral 
may be considered as the limit of an n-fold integral 

ii [ dsi dpi ~ ( s l ,  82 3 * * * 9 9 pz 3 * * 
i = l  

= lim n dsi dpiF(s , ,  . . . , 
fl-m i = ,  " I  

where 

If the limit ( 1 1 )  exists, and is independent of the choice of the orthogonal sets 
{+hi, Ai}, we have in (10) a unique definition of a functional integral (Rzewuski 1969). 

The representation (9) is valid only for functions which belong to Hilbert space. 
As the functions s, p are continuous functions with compact support, thus they belong 
to L2(R3) i.e. llSllz = 5 Sf dx <CO, where S =  (s, p ) ,  and the set {&, A i }  satisfy the conver- 
gence condition Z if < 00, where 

Let us introduce the inner product in the functional space of the functionals @[s, p ]  
= { (cli, Ai}. 

where the integral on the right-hand side of (13) is taken in the sense of the definition 
(10). As the inner product is finite, we find that 

We introduce the definition of the adjoints of operators ( 5 )  as follows: 

( @ I ,  C@2) = (C+@I 9 @ 2 )  (15 )  

C + = - C + a  D + =  D (16) 

(@I,D@Z) = (D+@l,  @ 2 ) .  

Taking into account (14) we obtain 

where a = -3k A6(x)JX=, dx is a positive real constant (equal to 3kK5/107r2, where 
K is the wavenumber). 

We shall try to formulate the variational principle for equation (4'). Consider the 
action J in the time interval ( t o ,  t ) ,  of the form 

J [ @ ]  = e-ar (a, 6- C@-iD@) dt  i.: 
where the dot represents the derivative with respect to time t. 

In expression (17), we may call L( t, @, 6) = e-a'(@, 6 - C@ - iD@) the density of 
the Lagrangian. The equations of motion are the Euler equations obtained by variation 
of L with respect to the variables @ and 6, i.e. 
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In the particular case when L = e-"'(@, 6 - C@ -iD@), we have 

e-"(@, 4, - c@ -io@) = e-"'(@, &) + e-"'(-C+@, 0) + e-"'(-iD+@, 0) 

a4, 

I aL 
a@ - ---e-" I (Cr@)* D(s,p)-ie-" '  (Dt@)*D(s,p) 

- ( - )= -a  d aL e-"' I @*D(s,p)+e-"' &*D(s,p). 
d t  a& 

Substituting these expressions into (18), we obtain 

-e-"' (-&*+a@*- Ct@*-iDt@*)D(s,p) = O .  J 
Therefore, 

-&* + a@* - c'@* - iD'@* = 0 -&* + C@* - !I@*=,. (19) 

Comparing this equation with equation (4') it can be seen that (19) is a complex 

Consider now the quantity 
conjugate of (4'). Hence equation (19) is equivalent to (4'). 

(@, @ I  = I IWs ,  p ;  tlI2D(s, P) (20) 

and examine the time evolution of (a, @) in time. We have 

= I [( C@*)@ -i(D@*)@]D(s, p )  + [@*C@+i @*D@]D(s, p )  5 
= 1 [(C@)*@ -i(D@)*@]D(s, p ) +  [@*C@+i@*D@]D(s, p )  

= (C@, @) - i( DO, 0) + (@, C@) + i(@, D@) 
= ( C @ , @ ) - ( C @ ,  @)+a(@,@)+i(@,  D@)-i(@, D @ ) = a ( @ , @ ) .  (21) 

We show that the equation (4') has a constant of motion 

(@, 4,) 
(0, @I 

JJ=- 

i.e. d n / d t  = 0. 

Indeed, we have 
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= - ( c @ , & ) + u ( @ ,  ~ ) + i ( ~ @ , ~ ) = u ( @ , b ) - [ ( ~ @ ,  b ) - i ( ~ @ , b ) ]  

= u ( @ , b ) - ( c @ + i ~ @ , b = u ( @ , b ) - ( ~ , b )  
(because (a@, , 0,) = a*(@l ,  0,)). 

Taking into account this fact and the relation (21) we obtain finally 

-- dII U ( @ ,  6) * (0, @ ) - U ( @ ,  b )  * (@, @) = 0. - 
d t  (@, w2 

The results presented in this letter are preliminary. In particular it remains to 
consider the physical interpretation of the constancy of the quantity l-I and an evaluation 
of the value of I'I for the well known characteristic functionals of Poisson and Gaussian 
fields. These problems shall be presented in future papers. 
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